

Viral ecogenomics: exploring viral diversity and virus-host interactions from metagenomes

Simon Roux, Environmental Genomics Group NASA Workshop without walls: Astrovirology

Outline

• "Viruses here, viruses there, viruses everywhere"
Why and how we study viruses of microbes in the environment

• "So I got some genomes, now what?"

Strengths and challenges of metagenomics for viral ecology

• "Should I kill or should I wait?"

Targeted metagenomes reveal new aspects of virus-host dynamics

Mcirobes rule the world

OUR MICROBIAL PLANET

MICROBES—life forms too tiny to see—play a surprisingly large role in life on Earth. Microbes are everywhere and they do a lot of good for human health and our planet. In fact, disease-causing microbes make up only a very tiny fraction of the millions of types of microbes. Microbes. . .

Think microbes are bad guys? Think again.

The Microbial Engines That Drive Earth's Biogeochemical Cycles

Paul G. Falkowski, 1* Tom Fenchel, 2* Edward F. Delong 3*

23 MAY 2008 VOL 320 SCIENCE

Mcirobes rule the world

OUR MICROBIAL PLANET

MICROBES—life forms too tiny to see—play a surprisingly large role in life on Earth. Microbes are everywhere, and they do a lot of good for human health and our planet. In fact, disease-causing microbes make up only

Think microbes are bad guys? Think again.

The Microbial Engines That Drive Earth's Biogeochemical Cycles

Paul G. Falkowski, 1* Tom Fenchel, 2* Edward F. Delong 3*
23 MAY 2008 VOL 320 SCIENCE

The human microbiome: at the interface of health and disease

Ilseung Cho^{1,2} and Martin J. Blaser^{1,2,3,4}

260 APRIL 2012 VOLUME 13

nature reviews genetics

Viruses of microbes are everywhere

Viruses of microbes are everywhere

Picture: Fuhrman Lab

Viruses of microbes are everywhere

Picture: Fuhrman Lab

Virus impacts on ecosystems

- Viruses influence microbial community structure & diversity
 - "Kill the winner" hypothesis

Virus impacts on ecosystems

- Viruses influence microbial community structure & diversity
 - "Kill the winner" hypothesis
- Viruses act as lateral gene transfer agents
 - Transduction(s), but also free DNA release, Gene Transfer Agent (GTA)

Virus impacts on ecosystems

- Viruses influence microbial community structure & diversity
 - "Kill the winner" hypothesis
- Viruses act as lateral gene transfer agents
 - Transduction(s), but also free DNA release, Gene Transfer Agent (GTA)
- Virus alter host cell phenotype
 - Integrated phages encoding toxins: lysogenic conversion
 - Auxiliary metabolic genes (AMGs)

- AMG examples:
 - Photosystem
 - Central C
 - N/P/S metabolism
 - Fermentation (giant virus)
 - -

Why study viral ecology?

- Viruses of microbes are important
 - Virus-like particles are (highly) abundant ✓
 - Viral infections can strongly impact microbial communities <

Challenges of viral ecology

- How can we study environmental viruses?
 - No universal marker gene (no 16S or 18S)
 - Challenging to cultivate
 - Needs cultivation-free "no-prior-knowledge required" approaches

Challenges of viral ecology

- How can we study environmental viruses?
 - No universal marker gene (no 16S or 18S)
 - Challenging to cultivate
 - Needs cultivation-free "no-prior-knowledge required" approaches
- Assemble viral genomes from (viral) metagenomes

Importance of metagenomics

- Unprecedented exploration of viral diversity
 - Now the primary source of new viral genomes

Importance of metagenomics

- Unprecedented exploration of viral diversity
 - Now the primary source of new viral genomes

Importance of metagenomics

- Unprecedented exploration of viral diversity
 - Now the primary source of new viral genomes

https://img.jgi.doe.gov/cgi-bin/vr

Outline

• "Viruses here, viruses there, viruses everywhere"
Why and how we study viruses of microbes in the environment

• "So I got some genomes, now what?"

Strengths and challenges of metagenomics for viral ecology

• "Should I kill or should I wait?"

Targeted metagenomes reveal new aspects of virus-host dynamics

Standards to analyze, describe, and report UViGs

nature biotechnology OPEN

PERSPECTIVE

Minimum Information about an Uncultivated Virus Genome (MIUViG)

Simon Roux¹, Evelien M Adriaenssens², Bas E Dutilh^{3,4}, Eugene V Koonin⁵, Andrew M Kropinski⁶, Mart Krupovic⁷, Jens H Kuhn⁸, Rob Lavigne⁹, J Rodney Brister⁵, Arvind Varsani^{10,11}, Clara Amid¹², Paper Rock¹⁵, Mya Broitbart¹⁶, Cuy P Cochranal², Paper A Daly¹⁷

- Standards to analyze, describe, and report UViGs
 - Tool(s) available and broadly used
 - Identification of virus sequences in (meta)genome assemblies
 - Distribution and abundance of UViGs
 - Functional annotation of UViGs

nature biotechnology OPEN

PERSPECTIVE

Minimum Information about an Uncultivated Virus Genome (MIUViG)

Simon Roux¹, Evelien M Adriaenssens², Bas E Dutilh^{3,4}, Eugene V Koonin⁵, Andrew M Kropinski⁶, Mart Krupovic⁷, Jens H Kuhn⁸, Rob Lavigne⁹, J Rodney Brister⁵, Arvind Varsani^{10,11}, Clara Amid¹², Poper Rock¹⁵, Mya Broitbart¹⁶, Cuy P Cochrana¹², Robecca A Daly¹⁷

- Standards to analyze, describe, and report UViGs
 - Tool(s) available and broadly used
 - Identification of virus sequences in (meta)genome assemblies
 - Distribution and abundance of UViGs
 - Functional annotation of UViGs

Free online platforms with virus-dedicated tools

https://ivirus.readthedocs.io https://www.cyverse.org

https://kbase.us

nature biotechnology OPEN

PERSPECTIVE

Minimum Information about an Uncultivated Virus Genome (MIUViG)

Simon Roux¹, Evelien M Adriaenssens², Bas E Dutilh^{3,4}, Eugene V Koonin⁵, Andrew M Kropinski⁶, Mart Krupovic⁷, Jens H Kuhn⁸, Rob Lavigne⁹, J Rodney Brister⁵, Arvind Varsani^{10,11}, Clara Amid¹², Poper Rock¹⁵, Mya Broitbart¹⁶, Cuy P Cochrana¹², Robecca A Daly¹⁷

- Standards to analyze, describe, and report UViGs
 - Tool(s) available and broadly used
 - Identification of virus sequences in (meta)genome assemblies
 - Distribution and abundance of UViGs
 - Functional annotation of UViGs
 - Tool(s) currently in development / being evaluated
 - Taxonomic classification of UViGs
 - Quality estimation of UViGs
 - In silico host prediction

nature biotechnology OPEN

PERSPECTIVE

Minimum Information about an Uncultivated Virus Genome (MIUViG)

Simon Roux¹, Evelien M Adriaenssens², Bas E Dutilh^{3,4}, Eugene V Koonin⁵, Andrew M Kropinski⁶, Mart Krupovic⁷, Jens H Kuhn⁸, Rob Lavigne⁹, J Rodney Brister⁵, Arvind Varsani^{10,11}, Clara Amid¹², Paper Rock¹⁵, Mya Broitbart¹⁶, Cuy P Cochronal², Paper A Daly¹⁷

- Standards to analyze, describe, and report UViGs
 - Tool(s) available and broadly used
 - Identification of virus sequences in (meta)genome assemblies
 - Distribution and abundance of UViGs

Final result = viral genome with full ecological/evolutionary context

- Tuvononne ciassineation oi o vios
- Quality estimation of UViGs
- In silico host prediction

nature biotechnology OPEN

PERSPECTIVE

Minimum Information about an Uncultivated Virus Genome (MIUViG)

Simon Roux¹, Evelien M Adriaenssens², Bas E Dutilh^{3,4}, Eugene V Koonin⁵, Andrew M Kropinski⁶, Mart Krupovic⁷, Jens H Kuhn⁸, Rob Lavigne⁹, J Rodney Brister⁵, Arvind Varsani^{10,11}, Clara Amid¹², Popus K Aziz¹³ Soth P Rordenstein¹⁴, Popus Rork¹⁵, Myo Broitbart¹⁶, Cuy P Cochrana¹², Popus A Dalu¹⁷

- Standards to analyze, describe, and report UViGs
 - Tool(s) available and broadly used
 - Identification of virus sequences in (meta)genome assemblies
 - Distribution and abundance of UViGs

Final result = viral genome with full ecological/evolutionary context

W T

- -
- Quality estimation of UViGs
- In silico host prediction

But it's not that simple (of course...)

Minimum Information about an Uncultivated Virus Genome (MIUViG)

Simon Roux¹, Evelien M Adriaenssens², Bas E Dutilh^{3,4}, Eugene V Koonin⁵, Andrew M Kropinski⁶, Mart Krupovic⁷, Jens H Kuhn⁸, Rob Lavigne⁹, J Rodney Brister⁵, Arvind Varsani^{10,11}, Clara Amid¹², Popus K Aziz¹³ Soth P Rordenstein¹⁴, Popus Rork¹⁵, Myo Broitbart¹⁶, Cuy P Cochrana¹², Popus A Dalu¹⁷

- Sample-to-viral-sequence pipeline
 - Methods still in development for many environments, e.g. soil

- Sample-to-viral-sequence pipeline
 - Methods still in development for many environments, e.g. soil
 - Viral sequence detection pipelines not foolproof

- Sample-to-viral-sequence pipeline
 - Methods still in development for many environments, e.g. soil
 - Viral sequence detection pipelines not foolproof
- In silico Host prediction
 - Still in active development, not fully mature yet
 - Only provide information on a (small) subset of viruses

- Sample-to-viral-sequence pipeline
 - Methods still in development for many environments, e.g. soil
 - Viral sequence detection pipelines not foolproof
- In silico Host prediction
 - Still in active development, not fully mature yet
 - Only provide information on a (small) subset of viruses

Sample-to-viral-sequence pipeline

- Methods still in development for many environments, e.g. soil
- Viral sequence detection pipelines not foolproof

In silico Host prediction

- Still in active development, not fully mature yet
- Only provide information on a (small) subset of viruses

Virus activity / infectivity

- Virus sequence in metagenome ≠ active ("infectious") virus
- Stay for next talk!

Outline

• "Viruses here, viruses there, viruses everywhere"

Why and how we study viruses of microbes in the environment

• "So I got some genomes, now what?"

Strengths and challenges of metagenomics for viral ecology

• "Should I kill or should I wait?"

Targeted metagenomes reveal new aspects of virus-host dynamics

Green Sulfur Bacteria

- Seasonal bloom in stratified lake
- example: 16S profile in Lake Vechten

Bloom in anoxic layer, i.e. late summer when lake is stratified

Green Sulfur Bacteria

- Seasonal bloom in stratified lake
- example: 16S profile in Lake Vechten

Bloom in anoxic layer, i.e. late summer when lake is stratified

Which viruses infect GSB?

Green Sulfur Bacteria

- Seasonal bloom in stratified lake
- example: 16S profile in Lake Vechten

Which viruses infect GSB?
Active arms race?

Green Sulfur Bacteria

- Seasonal bloom in stratified lake
- example: 16S profile in Lake Vechten

Yes because abundant host

Yes because strong seasonal variation

Which viruses infect GSB?
Active arms race or temperate infections/latency?

Green Sulfur Bacteria

- Seasonal bloom in stratified lake
- example: 16S profile in Lake Vechten

Yes because abundant host

Yes because strong seasonal variation

Which viruses infect GSB?
Active arms race or temperate infections/latency?

Green Sulfur Bacteria in Trout Bog Lake

Maureen Berg

Green Sulfur Bacteria in Trout Bog Lake

Viruses of Green Sulfur Bacteria

- Green Sulfur Bacteria in Trout Bog Lake
 - Two distinct host populations (closely related strains)
 - From 2005-2018 data: 2 viruses consistently associated with each host

Green Sulfur Bacteria in Trout Bog Lake

- Two distinct host populations (closely related strains)
- From 2005-2018 data: 2 viruses consistently associated with each host

- Green Sulfur Bacteria in Trout Bog Lake
 - Two distinct host populations (closely related strains)
 - From 2005-2018 data: 2 viruses consistently associated with each host

- Green Sulfur Bacteria in Trout Bog Lake
 - Two distinct host populations (closely related strains)
 - From 2005-2018 data: 2 viruses consistently associated with each host

Stable association?

Arms race?

- Green Sulfur Bacteria in Trout Bog Lake
 - Two distinct host populations (closely related strains)
 - From 2005-2018 data: 2 viruses consistently associated with each host

GSB virus 1-51 and 1-15: virtually unchanged between 2005 and 2018

Stable association

Arms race?

- Green Sulfur Bacteria in Trout Bog Lake
 - Two distinct host populations (closely related strains)
 - From 2005-2018 data: 2 viruses consistently associated with each host

GSB virus 1-33: Yearly replacement of ~ 1/3rd of the genome

Stable association

Arms race

- Green Sulfur Bacteria in Trout Bog Lake
 - Two distinct host populations (closely related strains)
 - From 2005-2018 data: 2 viruses consistently associated with each host

Stable association

Arms race

Green Sulfur Bacteria in Trout Bog Lake

- Two distinct host populations (closely related strains)
- From 2005-2018 data: 2 viruses consistently associated with each host
- Micro-diversity is the main difference between the two host populations

- Green Sulfur Bacteria in Trout Bog Lake
 - Two distinct host populations (closely related strains)
 - From 2005-2018 data: 2 viruses consistently associated with each host
 - Micro-diversity is the main difference between the two host populations

Observed diversity should scale with coverage

- Green Sulfur Bacteria in Trout Bog Lake
 - Two distinct host populations (closely related strains)
 - From 2005-2018 data: 2 viruses consistently associated with each host
 - Micro-diversity is the main difference between the two host populations

- Observed diversity should scale with coverage
- Ok for genome B (arms race)

Green Sulfur Bacteria in Trout Bog Lake

- Two distinct host populations (closely related strains)
- From 2005-2018 data: 2 viruses consistently associated with each host
- Micro-diversity is the main difference between the two host populations

- Observed diversity should scale with coverage
- Ok for genome B (arms race)
- Exception for genome A
 - high coverage low diversity

- Green Sulfur Bacteria in Trout Bog Lake
 - Two distinct host populations (closely related strains)
 - From 2005-2018 data: 2 viruses consistently associated with each host
 - Micro-diversity is the main difference between the two host populations

- Observed diversity should scale with coverage
- Ok for genome B (arms race)
- Exception for genome A
 - high coverage low diversity
 - genome-wide sweep already reported
 - → host population ~ clonal
 - → latent infections

Host diversity as key for virus-host dynamics

Diverse host population

Host diversity as key for virus-host dynamics

Diverse host population

Diverse host population:

- Variation in phage susceptibility between population members
- Phage-resistant mutants can arise in natural populations
- Selection for new phage variants, co-diversification, arms race
- Dynamics associated with lytic phages or short latency

Low diversity host population

Low diversity host population

Low diversity host population:

- Most population members have similar susceptibility
- Resistant mutants less likely to arise before ~100% infection rate
- Selection for temperate / long latency period phages

Low diversity host population

- Most population members have similar susceptibility
- Resistant mutants less likely to arise before ~100% infection rate
- Selection for temperate / long latency period phages

Low diversity host population

Conclusion

- Metagenomic framework for virus discovery
 - We (start to) understand how to find them
 - Metagenomics is foundational for virus ecogenomics
 - Standards for virus discovery, analysis, and report

Conclusion

- Metagenomic framework for virus discovery
 - We (start to) understand how to find them
 - Metagenomics is foundational for virus ecogenomics
 - Standards for virus discovery, analysis, and report
- Host interactions are key to understand viruses
 - Host linkage is the #1 challenge
 - Virus-host interactions comes in "all sizes, shapes, and flavor"
 - Will require large integrative approaches (multi 'omics + modeling + ...)

Conclusion

Metagenomic framework for virus discovery

- We (start to) understand how to find them
- Metagenomics is foundational for virus ecogenomics
- Standards for virus discovery, analysis, and report

Host interactions are key to understand viruses

- Host linkage is the #1 challenge
- Virus-host interactions comes in "all sizes, shapes, and flavor"
- Will require large integrative approaches (multi 'omics + modeling + ...)

- Completely new type of viruses?
- New mechanisms for host cell reprogramming?
- New defense/counter-defense mechanism(s)?

-95% UViGs not link

■ Total virus genomes (isolates)

Join Us in Oakland in 2020

Registration opens October 1, 2019

Keynote Speakers:

Jennifer Doudna

Eddy Rubin

Mart Krupovic

Workshops:

DOE Systems Biology Knowledgebase

Tools to Explore Microbial Genomes & Microbiomes: MGM Workshop @JGI

- Five-day hands-on workshop includes seminars and extensive tutorials on how to use the Integrated Microbial Genomes & Microbiomes (IMG/M) system for comparative analysis of isolate genomes and metagenomes.
- November 4 8, 2019 in Berkeley, California
- Limited to 40 participants

mgm.jgi.doe.gov

Register now!

Community Science Program (CSP) New Investigator Call for Proposals

 CSP New Investigator Call emphasizes the generation of pilot data to assess the feasibility of a large-scale CSP proposal submission

Deadline
September 26
bit.ly/NewPI2020

Thanks!

- Prokaryote Super Program & JGI
 - Maureen Berg
 - Emiley Eloe-Fadrosh
 - Axel Visel
 - Nikos Kyrpides
 - Natalia N. Ivanova
 - David Paez-Espino
 - Rex Malmstrom
 - Danielle Goudeau

- MacMahon Lab @ UW-M
 - Charles Olmsted
 - Trina Mac Mahon

- Bryant lab @ Penn State
 - Jennifer Thweatt
 - Don Bryant

